Numerical simulation of density-driven flow and heat transport processes in porous media using the network method

Journal ar
  • Volumen: 10
  • Número: 9
  • Fecha: 01 enero 2017
  • ISSN: 19961073
  • Tipo de fuente: Revista
  • DOI: 10.3390/en10091359
  • Tipo de documento: Artículo
  • Editorial: MDPI AGPostfachBaselCH-4005
© 2017 by the authors. Licensee MDPI, Basel, Switzerland.Density-driven flow and heat transport processes in 2-D porous media scenarios are governed by coupled, non-linear, partial differential equations that normally have to be solved numerically. In the present work, a model based on the network method simulation is designed and applied to simulate these processes, providing steady state patterns that demonstrate its computational power and reliability. The design is relatively simple and needs very few rules. Two applications in which heat is transported by natural convection in confined and saturated media are studied: slender boxes heated from below (a kind of Bénard problem) and partially heated horizontal plates in rectangular domains (the Elder problem). The streamfunction and temperature patterns show that the results are coherent with those of other authors: steady state patterns and heat transfer depend both on the Rayleigh number and on the characteristic Darcy velocity derived from the values of the hydrological, thermal and geometrical parameters of the problems.

Palabras clave del autor

    Palabras clave indexadas

      Detalles de financiación