Differences in soluble COD and ammonium when applying inverted phase fermentation to primary, secondary and mixed sludge
Water Science and Technology
- Volumen: 72
- Número: 8
- Fecha: 01 octubre 2015
- Páginas: 1390-1397
- ISSN: 02731223
- Tipo de fuente: Revista
- DOI: 10.2166/wst.2015.351
- Tipo de documento: Artículo
- Editorial: IWA Publishing 12 Caxton Street London SW1H 0QS
Primary, secondary and mixed sludge were treated by inverted phase fermentation. This treatment results in solid-liquid separation of sludge after endogenous enzymatic hydrolysis (anaerobic conditions: 42°C, 48 hours). The soluble chemical oxygen demand (sCOD) was increased in the solid phase up to 1,800%, 21,300% and 260% in primary, secondary and mixed sludge, respectively. The corresponding increase in sCOD in the liquid phase accordingly reached values of up to 440%, 5,100% and 140%. Phase separation led to an enrichment of volatile solids in the solid phase (89-358% primary sludge, 80-102% secondary sludge and 29-133% mixed sludge). The NH4 +-N values increased notably after the endogenous enzymatic hydrolysis itself. To investigate the short-term evolution following the treatment, the variation in sCOD, NH4 +-N and solids was also monitored after keeping the hydrolysate at 37°C under anaerobic conditions for 24 hours. This stage showed no generalized pattern in terms of sCOD.