Effects of litter quality and parent material on organic matter characteristics and N-dynamics in Luxembourg beech and hornbeam forests

Journal ar
Forest Ecology and Management
  • Volumen: 257
  • Número: 8
  • Fecha: 31 marzo 2009
  • Páginas: 1732-1739
  • ISSN: 03781127
  • Tipo de fuente: Revista
  • DOI: 10.1016/j.foreco.2009.01.030
  • Tipo de documento: Artículo
To test effects of litter quality and soil conditions on N-dynamics, we selected seven forests in Luxembourg dominated by beech (Fagus sylvatica, L.) and hornbeam (Carpinus betulus L.), and located on acid loam, decalcified marl or limestone, and measured organic matter characteristics, microbial C and N and net N-mineralization in a laboratory incubation experiment. Organic layer characteristics were significantly affected by species, with lower litter decay and higher accumulation under the less palatable beech, even on limestone. However, beech and hornbeam did not show any differences in N-cycling at all. Instead of species, N-cycling was affected by site conditions, albeit different than expected. Microbial N generally increased from acid loam to limestone, but acid loam showed higher net N-mineralization, especially in the organic layer. Also, acid loam showed high instead of low efficiency of N-mineralization per unit microbe, in both organic layer and mineral topsoil. In addition, acid loam showed net consumption of DOC instead of release in both soil layers, which suggests that not N, but C was a limiting factor to decomposition. In contrast, limestone showed low net N-mineralization in the organic layer, despite high mass and well-decomposed organic matter, and low efficiency of N-mineralization per unit microbe in both organic layer and mineral topsoil. DOC was net released instead of consumed, which supported that not C, but N was a limiting factor. The general lack of differences in net N-cycling between species, but relatively clear site effects, is discussed in relation to different microbial strategies. Acid soil may have high net N-release despite low biological activity, because N-requirements of fungi are also low, while in calcareous soil, high bacterial N-demand may counteract high gross N-release. Thus, species producing litter that decomposes rapidly may be planted to improve soil conditions and plant biodiversity, but litter quality effects on N-availability may be less important than soil conditions. © 2009 Elsevier B.V. All rights reserved.

Palabras clave del autor

    Palabras clave indexadas

      Detalles de financiación