Article

Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions

Journal ar
Numerical Algorithms
  • Volumen: 74
  • Número: 2
  • Fecha: 01 February 2017
  • Páginas: 371-391
  • ISSN: 15729265 10171398
  • Source Type: Journal
  • DOI: 10.1007/s11075-016-0152-5
  • Document Type: Article
  • Publisher: Springer New York LLC barbara.b.bertram@gsk.com
© 2016, Springer Science+Business Media New York. We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212¿223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24¿32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257¿264 1977; Candela and Marquina. Computing 44, 169¿184 1990; Candela and Marquina. Computing 45(4), 355¿367 1990; Chun. Appl. Math. Comput. 190(2), 1432¿1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686¿698 2007; Deghan. Comput. Appl Math. 29(1), 19¿30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513¿519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356¿365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686¿698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356¿365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227¿236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325¿342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591¿601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1¿8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21¿31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381¿7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433¿455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29¿40 1999; Jarratt. Math. Comput. 20(95), 434¿437 1966; Kou and Li. Appl. Math. Comput. 189, 1816¿1821 2007; Kou and Wang. Numer. Algor. 60, 369¿390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60¿66 2010; Magreñán. Appl. Math. Comput. 233, 29¿38 2014; Magreñán. Appl. Math. Comput. 248, 215¿224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873¿887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585¿603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129¿142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468¿477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441¿456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study

Author keywords

    Indexed keywords

      Funding details